

Solid State Chemical Sensors for Monitoring Hydrogen in IOF Process Streams

Program Review June 6, 2001 New Orleans

Project Team

- Pennsylvania State University (Nanofabrication facility) Mark Horn, RaviPrakash Jayaraman, Russell Messier & Robert McGrath
- Sandia National Laboratory (SNL), Combustion Research Facility Anthony McDaniel & Dennis Morrison.
- Air Products and Chemicals Inc. (APCI) Frank Schweighardt & Merrill Brenner
- DCH Technology (DCHT) Peter Jardine & Dan Dunn.

Outline

- Introduction/project Review
- > Air Products & Chemicals Inc. activities
- Sandia National Labs activities
- Penn State University activities
- Project summary

Statement of Work

Develop solid-state hydrogen sensor technology to monitor hydrogen (H₂) in IOF (Industries of the Future) process streams.

These process streams are chemically and thermally aggressive environments that may contain other reactive gases at high temperature and/or high pressure.

Background Information

- Original sensor technology was developed by Sandia Labs in partnership with Penn State.
- The technology was exclusively licensed to DCHT, who extended the development and commercialized the sensor.
- Recently advances at Sandia in active metal alloy development and in understanding of the surface chemistries governing sensor operation enable development of sensors operable in harsh, reactive chemistry environments.
- The goal of this project is to develop such advanced sensors, demonstrate their operation in IOF chemical facilities and commercialize sensors for the benefit of a large segment of the IOF chemical industry.

Project Overview

Phase I

- ➤ Fabricate and improve application-specific H₂ sensors.
- ➤ Characterize sensor response in controlled laboratory experiments involving hydrogen rich gas mixtures simulating or extracted from HyCo off-gas facilities.
- Conduct preliminary field tests at APCI Wilmington, CA processing plants to evaluate sensor operation in realistic industrial process environment.

Phase II

- Design of advanced sensor structures using theory, modeling, and experiments (SNL & PSU).
- > Fabrication of new hydrogen sensors with advanced alloy architectures (PSU).
- > Test prototype sensors in IOF plant environments (APCI).
- > Transfer of technology to a commercial partner (DCHT).

Robust Hydrogen Sensor[™] from DCH Technologies

Sensor elements (resistor, transistor-FET and temperature diode) as part of an Application Specific Integrated Circuit (ASIC).

- Resistor Pd/Ni metal strip whose resistance changes when hydrogen gets adsorbed
- FET A Field Effect Transistor whose gate is made of a thin Pd/Ni film.
 The threshold voltage (voltage at which the FET turns on) changes when hydrogen is adsorbed.
- Temperature diode A diode that monitors the temperature and maintains it at a constant value for efficient working of the sensing devices.

Sensor performance

Measurement range : 0 - 100% hydrogen

Accuracy : +/- 5% depending on concentration

Operating pressure range : tested up to 500 psi

DCHT delivered a sensor unit to APCI for field testing

*Source: www.dcht.com/products/robust_hydrogen_sensor

AIR PRODUCTS ACTIVITIES

HyCO Feed Gas Composition Analysis

Business Metric

Quantify hydrogen content in plant feedstock & in-process streams to reduce power consumption, minimize gas venting, and maximize plant performance factors.

E.G.: Reduce Steam: Carbon by 0.1 units - Gain 1.24 BTU/SCF = 0.38% Eff

Value: 90M SCF H₂/Day * 1.24 BTU/SCF = 112M BTU/Day

Technical Metric

Incorporate on-line hydrogen analysis time to <5 sec; improve compositional analysis accuracy (<0.1%) and, reduce cost per analysis by 38%.

ABB/EXTREL Process Mass Spectrometer (\$165,000)

Mass Spec -HyCO Feed Analysis

Process Testing protocol

- Design/construct Hydrogen sensor test assembly
- Complete hazard review
- System
 - o 1-liter stainless steel flow vessel
 - o Two DCHT sensors facing each other
 - o Purge rate 5 liters/minute at 25 psi
 - o Interface with HyCO feed (before mass spec)
- Test phase 10 days

Measured variation in Hydrogen content in feed gas

Mass spectrometer

DCHT sensor

Summary

- Current technology (DCHT sensor) adequate for remote monitoring on extracted samples
 - Needs to be pressure compensated and temperature controlled
 - Sample line preconditioned, unclear as to the effects of poisoning or chemical interference
- APCI not interested in replacing mass spectrometers with H₂ sensors
- > Industry desires in situ process monitors
 - Survive aggressive process environments at low cost

SANDIA ACTIVITIES

- Theoretical tools for predicting sensor behavior
 - Modeling tools for simulation-based data reduction and optimization of sensor performance
 - Elementary reaction mechanisms for describing relevant chemistry at the gas-sensor interface
 - First-principles description of the sensor response function as it relates to surface coverage of hydrogen
- Experimental apparatus for evaluating sensor behavior
 - Characterize sensor in laboratory setting under process-like conditions
 - Identify hostile operating conditions that lead to device failure
 - Evaluate new sensor designs

Modeling Tool Used to Simulate Device Behavior

$$\rho V \frac{dY_k}{dt} = \dot{m}^* (Y_k^* - Y_k) + \dot{\omega}_k W_k V + \sum_{m=1}^M \dot{s}_{k,m} W_k A_m - Y_k \left(\sum_{m=1}^M A_m \sum_{j=1}^{K_g} \dot{s}_{j,m} W_j + \rho V \left(\frac{1}{\overline{T}} \frac{d\overline{T}}{dt} - \frac{1}{\overline{W}} \frac{d\overline{W}}{dt} \right) \right) \qquad \qquad k = 1, \dots, K_g$$

$$\rho V \left(\overline{c}_p \left(1 - Y_e\right) \frac{dT}{dt} + Y_e c_{pe} \frac{dT_e}{dt}\right) \\ = \dot{m}^* \sum_{k=1}^{K_g} Y_k^* \left(h_k^* - h_k\right) - V \sum_{k=1}^{K_g} h_k \dot{\omega}_k W_k \\ - \sum_{m=1}^{M} A_m \sum_{k=1}^{K_{tot}} h_k \dot{s}_{k,m} W_k \\ - Q_{loss} - Q_{source} + Q_{loss} - Q_$$

- Transient Continuously-Stirred Tank Reactors (TCSTR) model used to predict behavior of H₂ sensor in different chemical environments
 - Model experimental data, resolve key kinetic parameters

Sample Reaction Mechanism for Pd / H₂ / O₂ System

$$H_2 + 2Pd(s) \leftrightarrow 2H(s)$$

$$O_2 + 8Pd(s) \rightarrow 2O(s)$$

$$H(s) + O(s) \rightarrow OH(s) + Pd(s)$$

$$H(s) + OH(s) \rightarrow H_2O + 5Pd(s)$$

H diffuses into bulk Pd

- Reaction sequence describes:
 - Adsorption of H_2 and O_2 to form the adatoms H(s) and O(s)
 - Reactions between adsorbates to create surface bound OH(s) and H₂O
 - Coverage of H(s) determines the bulk H content of the film
 - Evaluate the effects of CO and H₂S exposure
- Kinetic parameters for surface reactions available in literature or can be determined experimentally via model-based data reduction methods

H₂ Surface Coverage and Sensor Response

- Conditions of numerical experiment
- H_2 :He (56%:44%) exposure followed by HyCO gas matrix (56% H_2 , 35% CO, 5% CO_2 , 4% CH_4)
- $T_{gas} = 300 \text{ K}$, $T_{surface} = 353 \text{ K}$
- CO able to adsorb onto H(s)-covered Pd surface, inhibit H₂ reaction, predict relatively long recovery times

Device Characterization

- Laboratory facility
 - Expose test structures to controlled environments (temperature, pressure, gas composition)
 - Residual gas analyzer (RGA) used to monitor gas composition of sensing environment
 - Employ rapid-screening techniques, simultaneously monitor ∆R from all 12 resistor elements with custom hardware, electronics, and LabView software
- Use design of experiment (DOE) methods to plan and coordinate research activity

Data/Results Sandia sensor

- Quadratic dependence in terms of total pressure and H₂ concentration
- Observed response in good agreement with theory
 - Sievert's Law

Data/Results DCH sensor

- DCH sensor exhibits a linear response to H₂ concentration and total pressure
- Behavior of Sandia and DCH sensors are not consistent
- WHY?
 - DCH manipulates electronic signal differently
 - Possible effects on sensitivity or system response

Summary

- Developed numerical model of sensor behavior
 - Includes detailed surface chemistry
 - Use model predictions to design high pressure experiments and survey potential alloy partners for Pd
- > Sandia and DCHT sensors differ in response characteristics to H₂
 - DCHT post processing of ∆R corrects for non-linear physics
 - Sensors must be pressure compensated to recover absolute H₂ concentrations
- Evaluated Sandia and DCHT sensors in HyCo mixtures
 - Evidence of reduced sensitivity after CO exposure

PENN STATE ACTIVITIES

- Resolve processing issues in metallization (Pd/Ni alloys)
 - Sputter deposition of Pd/Ni alloy films
 - Pattern metal films using lift-off process
 - Establish metal film composition using resistivity and EDS measurements
- Design and fabricate sensors and provide prototype for characterization and testing at SNL
 - Incorporate advanced active metal alloys (Phase I)
 - Evaluate processes and performance of chemiresistors

Status at last Program review (Baltimore - 06/00)

- ➤ Optimize metal deposition procedure (magnetron sputtering) to deposit alloys and alter alloy compositions
- ➤ Initiate mask design based on Sandia sensors chemresistors

Current status (New Orleans - 06/01)

- > Established process flow for fabrication of sensors
- > Finalized design of sensor and fabricated masks
- ➤ Fabricated sensors with different alloy compositions (to be tested)

Design considerations for fabrication of chemiresistors

Design considerations

• Stability, reproducibility, response time and recovery.

Effects

- Joule heating
- alloy composition.
- structure microstructure, morphology.
- geometry perimeter to area ratio, edge to area ratio, active to non-active area, film thickness.

Chemiresistor structure

Parameters chosen

- Resistance 500 to 5000 Ω (length 400 μ m, 800 μ m, 3200 μ m, 4800 μ m)
- Film thickness 500 to 2500 Å

Chemiresistor - individual die

Chemiresistor - individual die

Chemiresistor mask layout

Chemiresistor masks

Mask 1 Mask 2

Mask 1 – contact pads and interconnects.

Mask 2 – chemiresistors (Pd/Ni alloy metal lines)

Process Flow

Metallization

Contacts (evaporation)

200Å Ti (e-gun evaporation) + 1000Å Al

Resistor lines (magnetron sputtering)

200Å Ti + 200Å Ni (e-gun evaporation) + 1000Å Pd/Ni (5 min)

Sputter deposition conditions

Pd – 20 W power, 5 mTorr pressure Ni – 20 W power, 5mTorr pressure frequency = 440 kHz pulse width = 145 μ m

Schematic of magnetron sputter deposition system

Chemiresistor structures

Budgetary Summary for Phase I and Phase II (projected)

	Phase I	Phase II (year 1)	Phase II (year2)
DOE Funds	100,000	400,000	400,000
Cost Share	75,515	147,754	144,152
Annual Totals	175,515	547,754	544,152
Total Project			1,267,421

Notes: Project includes research and demonstration activities in each project year reflecting deployment and, hopefully, commercialization of incremental improvements in hydrogen sensor technology. Appropriate cost sharing is provided in all cases.

Project Schedule — Phase I

Activity Name	Start	Finish					FY	00							FY	01		
	Date	Date	D	J	F	М	Α	М	J	J	Α	S	0	N	D	J	F	М
Phase I:																		
Award announced via OIT internet site	12/15/99		•															
Contract negotiations with Chicago Field Office	2/1/00	9/1/00		•	,							7						П
Task Ia: Sensor Fabrication (PSU)																		П
Procure DOE funding / Official start date of project	9/1/00										4	•						П
Adapt electronic fabrication facilities to reproduce Sandia / DCHT technology at PSU	7/1/00	11/1/00							•					7				
Fabricate H2 chemiresitor	7/1/00	1/1/01							•							7		
Establish fabrication protocols at PSU for altering alloy composition	9/1/00	1/1/01									7	7				7		
Task Ib: Sensor Characterization (SNL)																		
Procure DOE funding	6/1/00							4										
Procure test equipment from DCHT	7/1/00								•									П
Construct lab facility for sensor testing	5/1/00	11/1/00					•							7				
Characterize Sandia chemiressitor in high H2 and HyCO test-gas matrix	3/1/00	12/31/00			7											7		
Characterize DCHT chemiressitor in high H2 and HyCO test-gas matrix	11/1/00	12/31/00											7	_		7		
Characterize PSU fabed chemiressitor in H2 and other test-gas matrices	1/1/01	3/1/01													7	_		7
Task Ic: Field Tests (APCI)																		
Procure test equipment from DCHT	7/1/00								4									
Prepare, test, and document DCHT sensor/process interface at APCI Allentown, PA prior to field trial	7/1/00	9/1/00							7	_		7						
Test window for H2 sensor at HyCO facility (Wilmington, CA)	9/1/00	11/1/00									7	_		7				
Analyze field data and prepare report	11/15/00	3/1/01												▽				7
Administrative Activities																		
DOE program review meeting in Baltimore, MD	6/6/00								•									
On-site group meetings between PSU, SNL, APCI, & DCHT	1/27/00 9/29/00			4								4						
Revise Phase II program plan	2/1/01	3/1/01														7	7	7
Chemiresistor: proceed with Phase II activites	4/1/01																	
			D	J	F	М	Α	М	J	J	Α	s	0	N	D	J	F	М

Project Schedule — Phase II

Activity Name	Start Date	Finish Date		FY0		01						FY(Y 02		
normly name	olali Dale	r man base	Α	М	J	J	A	s	0	N	D	J	F	М	Α
Phase II (24 months)														П	\neg
Task IIa: Design of advanced			\vdash	\vdash	\vdash	\vdash	\vdash			\vdash	\vdash	\vdash	\vdash	\vdash	\dashv
sensor structures (SNL)						L									
Model existing sensor chemistry	4/1/01	10/1/01	Ĭ						7						
Develop surface-chemistry models for alternative sensor materials	10/1/01	10/1/02						7	-						
Predict effects of mixed IOF gas streams on sensor performance	4/1/01	10/1/02	Ţ												
Select improved sensor designs	7/1/01 1/1/02 7/1/02				•						•				
Prepare specifications for new sensor	7/1/01	9/1/01		Г	7	7		7							\neg
designs	1/1/02	3/1/02				l	ľ				١,٢			1	
	7/1/02	9/1/02	<u> </u>	\vdash	<u> </u>	_	<u> </u>	_		_	_	<u> </u>	_	\vdash	_
Lab characterization of fabricated sensors	9/1/01	1/1/03				l	١,	_							
Task IIb: Fabrication of new sensors with advanced properties (PSU)															
Fabricate chemiresistors	7/1/01	10/1/02			7	7									
Dedomina a surlification	9/1/01					1									
Performance qualification	10/1/02					l	Ι'	[Ι'		
Fabricate multiple-element sensors	4/1/02	1/1/03	\vdash	\vdash	\vdash	⊢	\vdash	\vdash		\vdash	\vdash	\vdash	\vdash	-	_
r donesia manpre-cicinem sensora	8/1/02	111100				l	l							١	
Performance qualification	1/1/03					l	l								
Incorporate H2 selective membranes into	4/1/02	1/1/03	\vdash	Г	Т	Т	\vdash	Т		Т	\vdash	Т	$\overline{}$	Τ,	
sensor designs	8/1/02					l	l							۱ ۱	
Performance qualification	1/1/03														
Task IIc: Prototype testing in IOF						П									
plant environments (APCI)			<u> </u>	lacksquare	_	╙	_	_		_	_	_	_	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	_
Prepare test unit for plant installation	8/1/01	10/1/01				١ ٦	~		7						
Plant testing (high H2)	10/1/01	12/1/01				Г		7	7	F	7				П
Prepare test unit for specialty chemical plant installation	3/1/02	5/1/02											7	_	ij
Plant testing (specialty chemicals)	5/1/02	7/1/02				Г									₹
Delivery of plant testing data to SNL and	12/1/01					Г	Г								\neg
PSU for analysis	7/1/02		<u> </u>	lacksquare	_	<u> </u>	_	_		∟ ¹	_	_	_	$oxed{oxed}$	_
Task IId: Transfer technology to						l									
commercial partner	0.01.00.0	011100	\vdash	\vdash	\vdash	⊢	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\dashv
Prepare specifications for commercial sensors	8/1/02	3/1/03													
DCHT, design process interface for next generation devices	8/1/01	3/1/03				7	_								
Final report	4/1/03					Т	\vdash			Г					\dashv
			A	м	J	J	A	8	0	N	D	J	F	М	
		L	۸	М	ú	П	^	5	U	N	U	ų	F	M	ñ

Project Schedule — Phase II, cont'd

Activity Name	Start Date	Finish Date			FY	12				F	Y 0	3		
normly realite	olan Dale	r i isii Dale	И	7	J	Α	S	0	N	D	J	F	М	Α
Phase II (24 months)			Г		Г									
Task IIa: Design of advanced			Н	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	Н	
sensor structures (SNL)														
Model existing sensor chemistry	4/1/01	10/1/01	Γ		Г				Г		Г			
Develop surface-chemistry models for alternative sensor materials	10/1/01	10/1/02						7						
Predict effects of mixed IOF gas streams on sensor performance	4/1/01	10/1/02	-					7						
Select improved sensor designs	7/1/01 1/1/02 7/1/02			4										
Prepare specifications for new sensor	7/1/01	9/1/01	Н	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	Н	Н	
designs	1/1/02	3/1/02						l	l					
-	7/1/02	9/1/02		١,	7		7							
Lab characterization of fabricated sensors	9/1/01	1/1/03									7			
Task IIb: Fabrication of new sensors with advanced properties (PSU)														
Fabricate chemiresistors	7/1/01	10/1/02					L,	5	\vdash	\vdash	\vdash	\vdash	\vdash	
	9/1/01		Г					ľ	l	l				
Performance qualification	3/1/02		П		l		١ (•	l	l				
	10/1/02													
Fabricate multiple-element sensors	4/1/02	1/1/03								_	5			
	8/1/02													
Performance qualification	1/1/03		L		_		L	_	┖					
Incorporate H2 selective membranes into	4/1/02	1/1/03								_	,			
sensor designs	8/1/02		Г						П					
Performance qualification	1/1/03		L	<u> </u>	_ '	_	<u> </u>	<u> </u>	⊢		_	\vdash	Ш	
Task IIc: Prototype testing in IOF			П		l			l	l	l				
plant environments (APCI)	0.11.00.1	400000	L	_	⊢	\vdash	⊢	├	⊢	├	\vdash	\vdash	\vdash	_
Prepare test unit for plant installation	8/1/01	10/1/01	L		L		L		L					
Plant testing (high H2)	10/1/01	12/1/01	L		L		L		L					
Prepare test unit for specialty chemical plant installation	3/1/02	5/1/02												
Plant testing (specialty chemicals)	5/1/02	7/1/02		1	7									
Delivery of plant testing data to SNL and	12/1/01				L									
PSU for analysis	7/1/02		L	_`	<u>_</u>	$ldsymbol{ldsymbol{eta}}$	<u> </u>	<u> </u>	_	_	lacksquare	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	Ш	
Task IId: Transfer technology to					l		l	l	l					
commercial partner	0.11.00.0	014100	L	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	_	\vdash	Щ	
Prepare specifications for commercial sensors	8/1/02	3/1/03			١	7							7	
DCHT, design process interface for next generation devices	8/1/01	3/1/03	F										7	
Final report	4/1/03		H		\vdash	\vdash	\vdash		\vdash			\vdash	-	,
							-	-		-		F		
			И	Л	J	Α	S	0	N	D	J	F	М	А

Milestones Achieved

- Established sensor fabrication protocols at PSU and fabricated sensors
- > Delivery of DCHT sensors and control unit to APCI, PSU, and Sandia
- ➤ Setup sensor characterization facility at SNL and tested DCHT, Sandia, and initial PSU sensors
- > Evaluated DCHT and Sandia sensors in HyCo gas test matrix
- > APCI field tested DCHT sensors at HyCo facility at Wilmington, Ca

Future Work

- ➤ Extensive investigation of current PSU test structures (Pd and Pd/Ni) at high temperature, high pressure, and HyCo gas ambients
- > Investigate viability of various alloy metals (Ag, Sn, Cu, ?) with Pd
 - Prevent H₂-induced phase transition in Pd at high pressure
 - Control undesirable surface chemistry
- ➤ Fabricate and test resistor structures with different alloy compositions
- > Investigate selectively permeable coatings to protect active surface from chemical poisoning (sulfur compounds)
- ➤ Construct high pressure testing station for characterizing sensors under more process-like conditions
- > Additional field trials at HyCo and other chemical plants

